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ABSTRACT

We propose a family of probabilistic segmentation algorithms for
videos that rely on a generative model capturing static and dynamic
natural image statistics. Our framework adopts flexibly regular-
ized mixture models (FlexMM) [1], an efficient method to combine
mixture distributions across different data sources. FlexMMs of
Student-t distributions successfully segment static natural images,
through uncertainty-based information sharing between hidden lay-
ers of CNNs. We further extend this approach to videos and exploit
FlexMM to propagate segment labels across space and time. We
show that temporal propagation improves temporal consistency
of segmentation, reproducing qualitatively a key aspect of human
perceptual grouping. Besides, Student-t distributions can capture
statistics of optical flows of natural movies, which represent ap-
parent motion in the video. Integrating these motion cues in our
temporal FlexMM further enhances the segmentation of each frame
of natural movies. Our probabilistic dynamic segmentation algo-
rithms thus provide a new framework to study uncertainty in human
dynamic perceptual segmentation.

Index Terms— Video Segmentation, Mixture Models, Graphi-
cal Models, Optical Flows, Temporal Propagation

1. INTRODUCTION

Integrating visual features into perceptual groups and segmenting
those groups from each other, is key to adaptive behavior. While
there is ample literature for static image segmentation, much less
is known about how groups are formed and maintained during dy-
namic stimulation, and Gestalt principles of perceptual organization
such as the proximity rule—one of the most powerful static group-
ing cues—do not always generalize to temporal dynamics [2]. On
the other hand, subjective experience suggests that coherent motion
of objects through visual space is a powerful cue for segmentation,
which has also been exploited in several algorithms [3, 4]. There-
fore, it is crucial to develop theoretical frameworks that respect prin-
ciples of static segmentation and extend them to dynamic inputs. Re-
cently, some video segmentation approaches have started providing
high accuracy results thanks to advances in deep learning techniques,
for example by relying on a recurrent neural network to estimate spa-
tial and temporal patterns [5] or using appearance and motion cues
through a two-stream network [6] and fuse them to obtain segmen-
tation maps. The current methods achieving state-of-the-art perfor-
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mances for video object segmentation [7, 8] are unsupervised deep-
learning based methods using a Siamese architecture and spatial and
long-term temporal context to improve time consistency. Chandra et
al. [9] use spatio-temporal random fields jointly with a CNN-based
per-frame segmentation to propagate temporal information. Some
methods [10, 11] combine static features from adjacent frames for
segmentation prediction, which can increase the computation cost
[10].

Different from the approach introduced in this paper, these algo-
rithms are not based on probabilistic models, and so cannot account
for local and global uncertainty of the video segmentation. Indeed,
uncertainty is a central aspect of human perception, and our long
term goal is to develop an ideal observer model of human percep-
tual segmentation [12]. Modeling uncertainty is also important for
real-life applications where e.g. crowding and occlusions can pro-
duce substantial uncertainty about segmentation. Here we propose
a family of probabilistic segmentation algorithms that share group-
ing information across visual features in space and time, and rely on
a generative model that captures static and dynamic natural image
statistics. Our framework adopts flexibly regularized mixture mod-
els (FlexMM) [1], an efficient method to combine mixture distribu-
tions across different data sources. FlexMMs of Student-t distribu-
tions capture the statistics of wavelet coefficients and hidden units of
deep convolutional neural networks (CNNs), and successfully seg-
ment static natural images, through uncertainty-based information
sharing between hidden layers of CNNs. Here, we further extend
this approach to dynamic inputs.

The contributions of this paper are the following: 1. We develop
FlexMMs for temporal and spatial propagation of information, 2.
We propose an efficient and flexible video segmentation algorithm,
3. We test FlexMMs on two databases to show that temporal and
motion propagation throughout inference improves the segmentation
of sequences of images, especially in case of large displacements.

2. STUDENT MIXTURE MODELS FOR VIDEO
MODELING

Due to their ability to effectively model image statistics and pixel
correlations, Gaussian mixture models (GMM) have been widely
used for image segmentation [14, 15]. Yet, despite their tractability
and the low number of parameters to estimate, these models are sen-
sitive to noise and outliers. Multivariate Student-t distributions are
known to be more robust to outliers than GMMs, as they are more
heavily tailed. Furthermore, they capture both low-level features,
such as wavelet coefficients [16], and high-level features extracted
by deep CNNs [17, 18], and provide good results for static segmen-



a. Frame 1 b. Optical flow 1→ 2 c. Frame 2 d. Optical flow 2→ 3 e. Frame 3

Fig. 1: Three frames extracted from a video in the Davis database [13] and the estimated optical flows, computed from successive frames.

tation [19, 20, 1].

Here, we also want to extract and represent dynamic features
from the video to be segmented. Indeed, integrating temporal infor-
mation can be crucial to maintain a consistent segmentation across
the sequence. In this paper we explore two ways of integrating tem-
poral information. First, we directly share information between the
static features of successive frames, as described in the next section.
Second, we use optical flows, which provide a two-dimensional rep-
resentation of motion [21], its direction and speed, between succes-
sive image frames. As such, they give important cues about the posi-
tion and the changes of position of objects in the scene [22], so that
they may be involved in the decomposition of an image into mov-
ing objects. Figure 1 illustrates OFs obtained from adjacent frames
of a sequence, where the direction and speed of motion are repre-
sented by hue and saturation, respectively. Statistics of OFs in nat-
ural movies have not been studied extensively, but it is known that
they display sharp edges and follow a heavy-tail distribution, two
properties similar to static features of natural images. Roth [23] also
showed that OFs histograms are well captured by Student-t distri-
butions. As one can observe in Figure 1, OFs also convey precise
boundary information for moving objects and occlusions that can be
essential cues in scenes with low-visibility conditions. Thus, OFs
can be represented by a generative model using mixtures of multi-
variate Student-t distribution and estimating the mixing parameters
of this model, giving a motion segmentation map, and then enhance
video segmentation.

3. MODEL FOR DYNAMIC SEGMENTATION

The model presented here builds on FlexMM [1], and extends it
to capture sequences of images and spatially segment them. Con-
sider an image domain of size N and a number of frames T . We
assume that each pixel n in frame t is characterized by a feature
vector xn,t associated with a random vector Xn,t. Given a num-
ber K of segments in the sequence, our goal is to link each pixel
to a class, modeled by the random variable Cn,t, so as to obtain
probabilistic segmentation maps (pn,t,k = P(Cn,t = k))n,k for
every frame t of the sequence. The original formulation of these
FlexMMs takes advantage of the descriptive strength and tractabil-
ity of finite mixture models. FlexMMs extend finite mixtures to
impose a spatial and multi-source transfer of information by over-
parametrizing mixing probabilities p and adding a specific prior on
them: PXn,Pn|A(x,pn|a) = PPn(pn)

∑K
k=1 pn,kPX(k)(x; ak),

where for all n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, 0 ≤ pn,k ≤ 1,
K∑

k=1

pn,k = 1 and PX(k) represents the distribution of the feature

random vector given its class is k. We choose Student-t distribu-
tions with parameters ak to model these feature vectors. We also
assume that the mixing probabilities follow a Dirichlet distribution
Pn ∼ D(Bn), where parameter Bn is a random vector whose
distribution is linearly determined by the classes of the other pixels

and the other frames of the sequence ∀k ∈ {1, . . . ,K},

Bn,t,k =
∑
n′,t′

λn,t,k(n
′, t′)1k(Cn′,t′)− 1k(Cn,t) + 1, (2)

with (λn,t,k(n
′, t′))n′∈{1,...,N},t′∈{1,...,T} a set of N × T weights

that are specifically determined in function of the current pixel,
frame and segment. Under these assumptions, the mixing probabil-
ities, meaning the probabilistic segmentation maps, and the param-
eters of the Student-t distribution are inferred using an expectation-
maximization (EM) algorithm. At each iteration i, the mixing
probabilities are updated as a linear combination of the current pos-
terior probabilities ∀ k ∈ {1, . . . ,K}, ∀n ∈ {1, . . . , N}, ∀ t ∈
{1, . . . , T},

p
(i+1)
n,t,k =

∑
n′,t′

ωn,t,k(n
′, t′)τn′,t′,k,

with τ
(i)
n,t,k = P

(
Cn,t = k |Xn,t = xn,t,p

(i),a(i)
)

the estimated
posterior probabilities at iteration i and ωn,t,k weights given by
λn,t,k and a normalization constant. These weights can be chosen
freely and adapted to the sequence of images, the current frame t or
current pixel n. This model allows for spatial and temporal smooth-
ing, i.e. the propagation of information between pixels and also be-
tween frames. Figure 3 presents a simplified graph representation
of our generative model for a sequence of three frames made of two
pixels. The first strength of this model is its tractability: at each itera-
tion of the EM algorithm, the update rule of the mixing probabilities
pn,t,k is linear. A second advantage of this model is its flexibility,
because it is possible to entirely define how information is combined
and spread by choosing specific weights λn,t,k. In what follows, we
compare several options for these weights and the way the posterior
probabilities are combined during inference. Our first model, called
Temp-prop in the rest of the paper, combines spatial and temporal
local class assignments, as shown in Figure 3. We define the weights
λn,t,k so that the updated mixing probability is a linear combination
using three spatial Gaussian kernel, each one averaging locally the
posterior maps of the previous, current and next frames. The update
rule is given in Equation (1), where G is a 2D Gaussian kernel, and

m
(i)
n,t,k = G ∗ τ

(i)
.,t,k, and s

(i)
n,t

2
=

∑K
k=1 G∗τ(i)

.,t,k

2
(n)−m

(i)
n,t,k

2

K(1−G∗G(0))
can

be seen as the spatial mean and the variance of the posterior map
around pixel n, at frame t, for segment k. Therefore, for a given
frame, posterior maps that locally have a high variance (high uncer-
tainty) will influence relatively less the mixing probabilities of the
neighboring frames. Our second model, called Temp+OF prop sim-
ilarly combines the posterior maps from the current frame and from
optical flows from the previous and the next frames, incorporating
strong motion clues in the segmentation process.

At the end of the EM algorithm, we obtain probabilistic seg-
mentation maps (pn,t,k)n for each frame t ∈ {1, . . . , T} and each
segment k ∈ {1, . . . ,K} (Figure 3). At each position, the most-
probable segment is selected to obtain a segmentation map as shown
in Figure 3 (bottom row), each color corresponding to one segment.
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Fig. 2: Update rule for the mixing probabilities p during iteration i of the EM algorithm. See end of Section 3 for explanations.
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Fig. 3: Graphical model for our Temp-prop model: the prior of the
mixing probabilities depends on the class labels of the neighboring
pixels and of the previous and next frames. Each frame is associ-
ated with one mixture model. All segmentation maps are estimated
simultaneously by the EM algorithm. The last row displays the prob-
abilistic segmentation maps associated with the second frame of the
video segmented into three segments.

4. RESULTS

Implementation details. In our model, the observations (xn,t)n,t are
image features extracted by the pre-trained deep network VGG19
[24]. In the two implementations presented here (Temp prop and
Temp + OF prop), we limit ourselves to the features of the first layer
of the network. In the second model, we also use features of optical
flows estimated for each pair of frames to influence the segmentation
of the sequence. To estimate each optical flow from a pair of frames,
we used a method called PWC-net [25], an algorithm based on CNNs
that offers a good compromise between quality and efficiency. We
compare our two model implementations with a model that uses the
same static features as Temp prop, ie. layer 1 of VGG19, but ignores
temporal propagation. We compare with this model to evaluate the
effects of time propagation on image segmentation and on temporal
consistency. In addition, we also compare to the static model of [1],
handling each frame independently and propagating class informa-
tion between hidden units of deep CNNs. This hierarchical model
uses features from the 16 first layers of VGG19 and slightly outper-
forms comparable unsupervised algorithms [26, 27, 28], though it
does not match state-of-the-art and deep learning based algorithms.
Our main algorithms TempProp and Temp+OF run in 201.8s and
395.7s for a 40-frames sequence, 240x416 pixels on a single Intel
Xeon core (E5-2680), 7Gb RAM. The hierarchical models are an
order of magnitude slower than those using only one layer of fea-
tures, indicating that the number of features is the key determinant

of computational cost.
Qualitative results. We compared these algorithms using two
databases: the DAVIS database [13], a widely used database for
natural video segmentation, and the MPI-Sintel database [29], gath-
ering synthetic videos with complex motion patterns used to evaluate
OF estimation and video segmentation algorithms. Figure 4 presents
the segmentation maps for three sequences, produced by Temp prop,
Temp + OF prop and the hierarchical model of [1]. First, tempo-
ral propagation across the iterations of the EM algorithm, used in
our two models, seems to increase spatial smoothing. In the three
sequences, both models tend to create larger and more connected
segments, compared to the hierarchical model which segments each
frame independently. This effect is even more pronounced for the
model Temp + OF prop that propagates motion estimation. These
examples show how this model retrieves some object-level informa-
tion thanks to their motion, while the model based only on temporal
propagation and the hierarchical model seem more sensitive to il-
lumination changes and shadows (first and third row). Similarly,
in a complex scene such as the second row, OFs extract meaning-
ful regions of the scene that could hardly be retrieved by the other
two models. However, the model Temp + OF prop tends to gather
moving parts that don’t belong to the same objects (second row) and
to omit static objects in the scene (the second person, third row).
This highlights the issue of dealing with inconsistencies between
motion estimation and static features and how to prioritize between
these conflicting cues [2]. Note also that better spatial smoothing
and objects integrity come at the price of lower resolution in the
resulting segmentation maps. Additional videos comparing these
models are available online1.
Quantitative results. To quantify the performance of these methods,
we used two common evaluation metrics. First, as our main focus
is capturing temporal consistency of segmentation maps across the
sequence, we applied a temporal stability metric that uses OFs to
compute the overlap between the warped segmentation map of the
previous frame and current frame. This metric does not use the
ground truth segmentation, but only assesses temporal consistency
of the model segmentation. In addition, we also tested if temporal
integration helps static segmentation as suggested by Fig. 4, using
the Jaccard index that measures the overlap between regions in the
estimated and the true segmentation maps for every frame of the se-
quence independently. This is a measure of how well the static seg-
mentation of individual frames matches the ground truth. The scores
for both databases [29, 13] are reported in Figure 5.

Temporal stability across frames is particularly enhanced for
both temporal models compared to the static segmentation algorithm
(model Indep L1 using the first layer of VGG19). We found that the
initialization has also a strong impact on temporal consistency, as
we set the first frame initialization to influence the subsequent ones.
When the initialization is shared across frames but the estimation
process is still performed independently (Indep SI L1), temporal sta-
bility is closer to the temporal models, but still lower indicating that
temporal propagation of class information during inference is essen-
tial to capture temporal stability. These two new variations perform
slightly poorer on the MPI-Sintel database, where large displace-

1https://claunay.github.io/videoFlexMM.html



a. Original frame b. Ground truth c. Temp + OF prop d. Temp prop e. Hierar. model

Fig. 4: Segmentation of natural and synthetic videos using both models presented in Section 3 and the hierarchical model of [1] (combining
image features extracted from 16 layers of a VGG19 network).

a. Temporal stability metric b. Jaccard index

Davis MPI Sintel Davis MPI Sintel

Fig. 5: Performances of the two models presented in this paper, com-
pared with variants of the static model for image segmentation of [1],
using one (Indep. L1) or 16 layers (Indep. L16) of VGG19. The tem-
poral stability metric charts also compares these models with varia-
tions of the hierarchical model. The horizontal bar represents the
median, shaded boxes represent the quartiles of the dataset while the
errors bars show the rest of the distribution, except for outliers.

ments occur. The Jaccard index computed for both databases shows
that the model using OFs seems to slightly outperform the model
using only temporal propagation (Temp prop) and their equivalent
static algorithm (Indep L1). For a stronger test, we also compared
our models with the hierarchical model using 16 layers of VGG19.
Notice that this model takes advantage of the image features from
the 16 layers of a deep CNN, while the two models presented here
only use features from the first layer of this network. We retrieve
the same conclusions as with the model Indep L1, that is the two
models presented in this paper provide a significant improvement of
temporal stability when the initialization is independent and slightly
increase the Jaccard index.

5. DISCUSSION

We have introduced a new method for unsupervised video segmenta-
tion based on probabilistic mixture models. Modeling videos using a
mixture model and estimating the parameters of the model are com-
plex tasks, due to the high dimensionality of the feature space. To

offer an alternative to a spatio-temporal mixture model, which would
be too heavy to infer, we extended FlexMMs [1] to share information
between mixture models associated with each frame of the sequence.
In the resulting family of models, segmentation information is spread
across space and time in an adjustable fashion. We have shown that
the propagation of information between layers during the estimation
process improves temporal consistency. In addition, the approach
further enhances spatial smoothing and object retrieval compared to
the initial static algorithms, even when deeper layers of CNN are
used and especially when using optical flows.

Note that in some cases integrating information across frames is
not the best strategy, e.g. if there is a large change such as a scene
cut or a large eye movement. Our framework has the ability to adapt
to these changes by defining the appropriate weights λ (Eq (2)) so
that we can insert a change-detection mechanism to turn off tempo-
ral integration when necessary. As observed in Figure 4 (third row),
integrating motion and temporal cues can also be at the expense of
the detection of static objects. This observation shows the neces-
sity to properly fuse motion and appearance cues in video segmen-
tation algorithms and also to further explore how human perception
combines dynamic and static features, in particular when those cues
are in conflict [2, 30]. The flexibility of this new family of mod-
els enables to adapt the segmentation to this future analysis. A key
property of the model is that it produces probabilistic segmentation
maps per frame. Computationally, we take advantage of this mea-
sure of uncertainty (or precision) during inference, by averaging the
probabilistic segmentation maps of each frame weighted by their lo-
cal precision. In future work, this knowledge about the uncertainty
in the resulting segmentation can be compared to human perceptual
segmentation data, to test the hypothesis that human variability in
video segmentation may reflect perceptual uncertainty [12].

Our framework constitutes a step forward in developing ideal
observer models for the segmentation of dynamic natural inputs. To
enhance the biological foundation of our model, in future work we
will further examine different temporal features, for instance by us-
ing a model of neuronal responses in visual-cortical area MT [31] or
biologically inspired algorithms to compute OFs [22].
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